
Understanding Vision Transformers In Sparse Data Settings

Aayush Agrawal
Stanford University

aayush2k@stanford.edu

Elliot Dauber
Stanford University

dauber23@stanford.edu

Finn Dayton
Stanford University

finndayton@stanford.edu

Abstract

The recent success of the Vision Transformer (ViT) has
made it a popular choice for various computer vision tasks,
even as a replacement. However, understanding the inner
workings of this complex model can be challenging. In
this paper, we propose a novel approach for visualizing the
saliency maps generated by the ViT for image classifica-
tion, as well as an approach for quantitatively measuring
the quality of the saliency maps of the ViT. Our method
provides an intuitive and interpretable way to analyze the
learned representations and attention mechanisms of the
ViT. We demonstrate the effectiveness of our approach by
altering a custom implementation of ViT in multiple ways
and show how this can reveal interesting insights about the
model’s behavior. In addition, we show how our visual-
izations can be used to diagnose and identify potential is-
sues with the model, such as overfitting and underfitting.
To stress test our approach, we operate in a data sparse
environment. Our approach provides a valuable tool for re-
searchers and practitioners to gain a better understanding
of the ViT and to improve its performance on various com-
puter vision tasks.

1. Introduction
The recent success of the Vision Transformer (ViT) [5]

has propelled it to a popular choice for a wide range of com-
puter vision tasks. Its ability to compete with, and even re-
place, Convolutional Neural Networks (CNNs) has gener-
ated significant interest in the computer vision community.
However, comprehending the inner workings of these com-
plex models and understanding the mechanisms that enable
their impressive performance remains a challenge.

In this paper, we present a novel approach for visualiz-
ing the saliency maps of the ViT architecture, as well as
its variants. By leveraging these visualizations, we aim to
shed light on the intricate interactions within the model and
gain insights into how it processes and attends to different
image regions. Through our visualizations, we seek to iden-
tify patterns and correlations that can elucidate the decision-

making process of the ViT, providing researchers and prac-
titioners with a valuable tool for model analysis and inter-
pretation. The input to our algorithm will be a series of im-
ages (animals), and we will use a ViT to output a predicted
label. The visualizations (or saliency maps) will highlight
areas of the image that the ViT ”concentrated” on during the
inference process.

We operate in an intentionally data-sparse environment.
Saturating a model with tens of thousands or even hun-
dreds of thousands of images, can lead even poor architec-
tures to decent performance [9]. By constricting the num-
ber of training examples from each class–a situation many
researchers find themselves in–we hope to better contrast
the robustness of different model architectures. Further-
more, we present a quantitative approach to analyzing the
saliency maps of vision transformers that aids in our over-
all goal of understanding vision transformers at a deeper
level. This method takes advantage of the powerful im-
age instance segmentation model Fast R-CNN [8] to create
masks for the important objects in an image and compares
the saliency maps processed by our visualization software
with the segmentation masks in the image. While not per-
fect, this method seeks to understand whether or not a vision
transformer is ”paying attention” to the objects we expect it
to.

By applying our visualization approach to a benchmark
dataset, we demonstrate the effectiveness of our method in
revealing intricate details of the models’ internal workings.
Additionally, we showcase how our visualizations can be
utilized - in combination with a host of standard quantitative
metrics such as accuracy, precision, recall, and AUC-ROC,
to diagnose potential issues with the models, such as over-
fitting or underfitting, and propose potential improvements.

Overall, our research aims to contribute to the computer
vision community by providing a comprehensive visual-
ization method for understanding how vision transformers
work. Through our visualizations, we hope to uncover valu-
able insights into the models’ decision-making processes,
enhance their performance, and inspire further advance-
ments in the field of computer vision.

1

2. Related Work

The three papers selected for this literature review pro-
vide valuable insights into the state-of-the-art in computer
vision transformers, specifically Vision Transformers (ViT)
and Convolutional Vision Transformers (CvT), which are
the basis of the models we will be visualizing.

The first paper, ”An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale” [5], intro-
duces the ViT architecture as a powerful alternative to Con-
volutional Neural Networks (CNNs) for image recogni-
tion tasks. The ViT replaces the convolutional layers of
CNNs with self-attention mechanisms, allowing the model
to attend to different regions of the image simultaneously.
Specifically, the authors apply the self-attention mecha-
nisms that have become popular in NLP to images by split-
ting the images into patches, where each patch attends to
every other patch in an image. The authors show that
ViT achieves state-of-the-art performance on several image
recognition benchmarks, including ImageNet, and demon-
strate its scalability by training it on large datasets with up
to 300 million images.

The second paper, ”CvT: Introducing Convolutions to
Vision Transformers” [12], introduces the CvT architecture,
which combines the strengths of CNNs and Transformers.
The authors argue that the combination of convolutional
layers and self-attention mechanisms leads to better perfor-
mance and scalability than either architecture alone. One of
the important insights from this paper is that ViT doesn’t
do as well as traditional CNNs when trained on smaller
datasets, and that adding convolutional aspects to ViT can
improve its performance on small datasets because of the
inherent image understanding capabilities that convolutions
bring to the architecture. Though, we do not add convolu-
tions to our model, this paper highlighted the need to train
ViTs on larger datasets relative to CNNs.

The third paper, ”Do Vision Transformers See Like Con-
volutional Neural Networks?” [11], investigates whether
ViTs and CNNs attend to similar image regions when mak-
ing predictions and introduces some methods for visualiz-
ing transformer attention patterns that we will draw from.
The authors find that both architectures attend to similar
regions of the image and the differences in performance
between them can be attributed to the differences in their
learned representations. This will give us a starting point
in determining how to visualize the learned weights of the
models that we analyze.

3. Methods

Our overall method involved manipulating various ele-
ments of vision transformers and analyzing the changes to
the visualizations. Before any additional description of the
method, we must first thoroughly understand the ViT – as

it is a novel architecture. We show a diagram of the model
in Figure 1. We used Python for implementation, and used
Pytorch for running and training the model [1], Scikit-Learn
for analyzing the metrics [2], and Matplotlib for generating
the visualizations and graphs [3].

Figure 1: Vision Transformer Architecture [5]

3.1. Transformer Primer

ViTs partition an image into a sequence of non-
overlapping, equally-sized patches, subsequently trans-
formed into one-dimensional patch embeddings through a
linear transformation. Whereas convolutions in CNNs in-
herently encode the spatial relationships of the input im-
age, the transformer encoder does not do this. Therefore,
to ensure the preservation of spatial relationships within an
image, ViTs add positional embeddings to the patch em-
beddings. This injects information about relative positions
of the image patches into the model, thereby enabling the
model to utilize the spatial correlation among the patches.

At the heart of the ViT architecture lies the transformer
block, shown on the right side of Figure 1. It composed pri-
marily of a Multi-Head Self-Attention (MHSA) layer and
a Feed-Forward Neural Network (FFN) layer. The MHSA
layer enables the model to discern the interaction and rela-
tionships between different patches, considering both their
content and position. In its essence, MHSA is an exten-
sion of the self-attention mechanism, which calculates the
dependencies between each element in the sequence and all
the others. However, instead of performing this operation
only once, multi-head attention does it multiple times, in
parallel, for each ’head’. Each head learns and captures
different types of relationships within the data, leading to
better end classification accuracy.

For each attention head, the input patch embeddings are
linearly projected into three distinct spaces, represented by
Query (Q), Key (K), and Value (V) matrices. The purpose
of these projections is to create different representational
spaces that can learn to capture different aspects or features
of the input data. At each head, we perform the following

2

operation:

Attention(Qi,Ki, Vi) = softmax
(
QiK

T
i√

dk

)
Vi

Here, the softmax function is applied to ensure the
weights are positive and sum to 1, dk is the hidden dimen-
sion of the queries and keys, and the operation is done for
the i-th attention head. The outputs of all the heads are then
concatenated and linearly transformed to form the final out-
put. This attention mechanism is followed by a layernorm,
which we will delve in depth into in our experiments sec-
tion. Lastly, the data is passed through an MLP with two
fully-connected linear layers and an intervening ReLU ac-
tivation. This last layer combines the ”signal” from each
of the heads into a final representation. The encoder block
also includes two residual connections, shown by the side
arrows on the right side of Figure 1, whose importance we
will expound in our experiments section. Models typically
have multiple Transformer Encoder block stacked on top of
each other for deeper representations and performance.

Lastly, the classification head (MLP head on the top left
side of Figure 1) is responsible for transforming the patch
embeddings into final output predictions. Post-processing
through numerous transformer blocks, the patch embed-
dings are fed into the classification head, a linear layer suc-
ceeded by a softmax activation function. Specifically, the
class token, represented by the transformed embedding of
the first patch, is processed through the linear layer. Subse-
quently, the softmax function generates class probabilities.

3.2. Model Alterations

We ran six experiments where we picked different as-
pects of the ViT architecture and altered them to values that
we thought would make the ViT perform far worse than
the baseline implementation. We did this because the ViT
paper already achieves SoTA accuracy on various bench-
marks, so instead of trying to beat its accuracy, we aimed
to understand which parts of the ViT lead to its success
and accuracy. By decreasing the quality of different as-
pects of the implementation in isolation, we were able to
visualize and determine how each part of the vision trans-
former contributes to the saliency maps it learns. In addition
to visualizations, we calculated various quantitative metrics
that aided our understanding of the model’s overall perfor-
mance.

3.3. Visualization Approach

The goal of visualization is to see where on an image the
ViT ”concentrates” on when making predictions. This in-
volves being able to see how attention flows from the start to
the end of a Transformer. To quantify this, we used a tech-
nique called ”Attention Rollout” in Quantifying Attention

Flow in Transformers by Abnar and Zuidema [4]. Addition-
ally, we took inspiration from the following blog post [7]
and accompanying Github repo [6] to translate the method
initially designed for NLP transformers for ViTs.

The method involves multiplying the attention by the
gradient of the intended class output, then taking an av-
erage across all attention heads, disregarding the negative
ones. This enables us to separate and maintain only the at-
tentions that help delineate the target class (or classes). We
obtain an attention Matrix Aij at every Transformer block
that demonstrates how much attention flows from token j in
the preceding layer to token i in the succeeding one. We
multiply these matrices between each pair of layers to un-
derstand the overall attention flow between them. However,
we need to account for the residual connections - so we add
the identity matrix I to the attention matrices at each layer:
Aij + I . Despite the Attention Rollout paper advocating
for the mean of the heads, our empirical findings suggest
that using the smallest value among attention heads yields
more visually coherent and focused saliency maps. This in-
tuitively aligns with the idea that multiple attention heads
focus on various aspects, and using the minimum allows us
to eliminate significant noise by pinpointing their shared fo-
cus. This provides us a method to iteratively calculate the
Attention Rollout matrix at layer L:

AttentionRolloutL = (AL + I) ·AttentionRolloutL−1

The last step in processing involves concentrating solely
on the highest attentions, while discarding the others. This
helps our saliency map to solely depict the Visual Trans-
former ViT focusing on particular sections of an image,
which improves the way it singles out the object of inter-
est.

3.4. SMM: A Novel Metric

Once we generated saliency maps for each experiment,
we wanted a way of quantitatively analyzing them. We
decided to construct a novel metric that we coined the
”Saliency-map Mask Metric” (SMM). The calculation is in-
tuitive: we compare the area of the image being attended to
by the ViT to a mask of the object of importance. Thus,
we are able to get a quantitative measure of how accurate
the area is ViT attends to. This is done by using the Fast
R-CNN [8] model to perform object instance segmentation
on the input image, which outputs a mask over the image
that contains the pixels of the object being classified. This
mask is compared pixel-by-pixel to the visualization mask
that is generated by our attention visualization from each
image. Before this, a filter is applied to the visualization
output that sets all pixel values to zero that are not above a
pre-specified threshold (0.3). We then calculate the Jaccard
similarity of the pixels that are in the segmentation with the
pixels in the filtered attention mask.

3

The Jaccard similarity, often known as the Jaccard co-
efficient or the Intersection over Union (IoU), is a metric
used to measure the similarity and diversity of sample sets.
Mathematically, for two sets A and B, the Jaccard similarity
J can be represented as:

J(A,B) =
|A ∩B|
|A ∪B|

The Jaccard similarity measures the overlap between the
salient regions identified in the saliency map and the ground
truth regions in the original image. A high Jaccard sim-
ilarity implies that the saliency map effectively identifies
critical regions in the image, while a low Jaccard similarity
might indicate that the saliency map is highlighting irrele-
vant or less important parts of the image. This process is
somewhat naive in that it only considers the pixels that are
actually a part of the object being classified and not any
pixels in its environment that may be useful in the classi-
fication that the model may be attending to. However, it
still provides really interesting and useful information about
how the ViT model is operating internally and how well it
is attending to the important parts of the image.

4. Data
When deciding which dataset to choose, we preferred

one with relatively few classes for ease of evaluating perfor-
mance and producing visualizations. Following [12] which
found ViTs typically need more data to reach the same ac-
curacies of their CNN counterparts, we wanted our model
to be able to adequately learn each class so that our saliency
maps would be visually accurate as well as interesting. At
the same time, we were wary to saturate the model with tens
of thousands of images from each class as discussed above
and needed to enforce a relatively low-data regime. There-
fore, we decided to use the dataset Tiny Imagenet - intro-
duced by Le et al in 2015 in ”Tiny Imagenet Visual Recog-
nition Challenge.” [10] The dataset contains 100,000 col-
ored images of 200 classes (500 for each class) downsized
to 64x64 pixels. We chose 10 of the classes in the dataset
and only use those 10 classes data to train and test the model
(reasoning for limiting classes is aforementioned). Further,
the 10 classes chosen–whose names and examples are visi-
ble in Figure 2–are particularly difficult to classify, as pairs
of them are very similar looking. Notably, the goldfish
shown will be the image that we run all our attention visu-
alizations on to produce saliency maps. The remaining im-
ages highlight our chosen 10 classes. Of note is the extreme
similarity in appearance between classes 2 and 3, classes 6
and 7 and classes 8 and 9. This will be useful to under-
stand when we show the confusion matrices of our various
models.

Each class has 500 training images, 50 validation im-
ages, and 50 test images. Each image was first converted

into RGB format and then to a Pytorch tensor before being
inputted into the model (and undergoing the patch embed-
ding procedure as mentioned in the section above).

(a) Goldfish
(class 0)

(b) Salamander
(class 1)

(c) Tailed Frog
(class 2)

(d) Bullfrog
(class 3)

(e) American
alligator (class 4)

(f) Boa constrictor
(class 5)

(g) Trilobite
(class 6)

(h) Scorpion
(class 7)

(i) Black Widow
(class 8)

(j) Tarantula
(class 9)

Figure 2: Examples Each of the 10 Tiny Imagenet Classes Used

5. Experiments and Results
As mentioned before, all of our experiments were run

on a ViT model as defined in the original paper [5] but
implemented from scratch. Over the course of our exper-
iments, we altered our positional encoding scheme, number
of blocks in the encoder, number of attention heads, hid-
den dimension size, presence of residual connections, and
presence of layernorm. For all other hyperparameters, we
stuck with the values in the original ViT paper [5]: Adam
with beta1 = 0.9, beta2 = 0.999, a high weight decay of 0.1,
and a learning rate of 0.01 with a linear warm-up and decay.
Unlike the paper, however, we used a batch size of 128 and
patch size of 8 as both our dataset and image resolution were
much smaller than the paper’s dataset (Imagenet). While an
additional hyperparameter search fits other contexts, small
improvements in performance would not affect our overall
goal for this paper.

We trained each of the models for 50 epochs, and re-
port quantitative and qualitative metrics including accuracy,
recall, precision (shortened to ”prec” in the results tables),
F1-score, ROC AUC, confusion matrix, and our saliency-
map mask metric (SMM).

Overall, the greatest gains in performance above the
baseline were using a learned positional encoding, fewer (2)
attention heads and a higher hidden dimension (16). The
two biggest detriments to performance were removing the
residual connections and layernorms. Removing each of
these in isolation caused accuracy to drop to exactly ran-
dom performance (10%), meaning the model was incapable
of learning anything without them. The following sections
provide more detail on each experiment.

5.1. Baseline

We define a baseline ViT model architecture in line with
[5] that we then perform incremental alterations on. We use

4

a 1D sine/cosine positional encoding, 4 blocks in the en-
coder, 4 attention heads, a hidden dimension of 8, residual
connections, and layernorm. Table 1 summarizes these con-
figurations. We see the results of the baseline experiment in
Table 2, as well as the accompanying confusion matrix and
saliency map of an image of a fish in Figure 3.

Positional
Enc.

Encoder
Blocks

Attention
Heads

Hidden
Dim

Residuals Layernorm

Sin/Cos 4 4 8 Yes Yes

Table 1: Baseline ViT Parameters

Train
Acc

Test
Acc

Recall Prec F1
Score

ROC
AUC

SMM

0.476 0.328 0.314 0.367 0.312 0.766 0.025

Table 2: Baseline ViT Results on 10 Tiny Imagenet Classes

(a) Confusion Matrix (b) Baseline

Figure 3: Confusion Matrix and Saliency Map for Baseline

Though the baseline accuracy is not above 50%, we con-
tend this is still decent performance given only 500 training
examples from each class. Further, when we consider the
confusion matrix in Figure 3 and recognize the high simi-
larity between adjacent classes shown in Figure 2, we see
model’s latent understanding of the classes is quite good:
classes adjacent to the true class receive the bulk of incor-
rect labeling. We also notice the attention saliency map is
focused on the fish’s head near its eye.

5.2. Positional Encoding

In our first experiment, we alter the default sine/cosine
based positional encoding that are used in the classic Trans-
former architecture. In transformers, sine and cosine func-
tions are used in the positional encoding give the model a
sense of sequence order, something the self-attention mech-
anism doesn’t inherently possess.

We first try a learnable positional encoding. Compared
to the pre-defined, fixed sinusoidal approach the model has
the freedom to learn the most suitable representation of
position. ViTs break down images into non-overlapping
patches, and the spatial relationship between these patches
may be complex. By using a learnable positional encoding,
the model can learn to adapt the encoding to the character-
istics and spatial dependencies inherent in the image data,

which could lead to better performance in image classifi-
cation tasks. We also tried a simple integer positional en-
coding that simply assigned an incremented integer to each
patch. We wanted to see how much it would negatively
affect performance (which was our intuition). We see the
results of this experiment in Table 3, as well as the accom-
panying confusion matrix in Figure 4 and saliency map of
an image of a fish in Figure 5.

Pos
Enc

Train
Acc

Test
Acc

Recall Prec F1
Score

ROC
AUC

SMM

Base 0.476 0.328 0.317 0.367 0.312 0.766 0.025
Learn 0.536 0.390 0.365 0.384 0.376 0.802 0.065
Integer 0.476 0.318 0.302 0.325 0.304 0.769 0.026

Table 3: ViT with Different Positional Encoding Results on 10
Tiny Imagenet Classes

(a) Learned Pos Embedding (b) Integer Pos Embedding

Figure 4: Confusion Matrices for Positional Encoding Change

(a) Learned Pos Embedding (b) Integer Pos Embedding

Figure 5: Saliency Maps for Positional Encoding Change

From the Table 3, learned positional encoding is the
clear winner, achieving 39% test accuracy versus the 32.8%
of the baseline and higher scores for all other methods.
Further, the integer strategy achieved worse accuracy with
31.8% than the baseline, but was much closer than the dif-
ference between the baseline and the learned strategy.

The generated saliency maps provide an interesting qual-
itative interpretation: the inferior integer strategy focuses on
seven distinct positions around the fish. On the other hand,
the dominant learned strategy focuses on just two spots on
the fish. One interpretation of this is the better model is
more focused on two important points than being scattered
on many points.

5

5.3. Encoder Blocks

In our second experiment, we altered the number of
transformer encoder blocks in the ViT encoder. As touched
on earlier and shown in Figure 1, the ViT encoder is com-
posed of several identical encoder blocks, each contain-
ing the multi-headed self-attention mechanism described in
Section 3. Our intuition was that adding / removing blocks
would boost / decrease the model’s expressibility and thus
influence performance. The baseline number of blocks was
4. We see the results of the experiment in Table 4, as well as
the accompanying confusion matrix in Figure 6 and saliency
map of an image of a fish in Figure 7.

Blocks Train
Acc

Test
Acc

Recall Prec F1
Score

ROC
AUC

SMM

1 0.429 0.336 0.332 0.348 0.325 0.747 0.009
2 0.475 0.320 0.309 0.323 0.306 0.751 0.039

Base 0.476 0.317 0.328 0.367 0.312 0.766 0.025
8 0.374 0.310 0.309 0.279 0.280 0.739 0.017

Table 4: ViT with Different Number of Blocks Results on 10 Tiny
Imagenet Classes

(a) 1 Block (b) 2 Blocks

(c) 8 Block

Figure 6: Confusion Matrix for Number of Blocks in Encoder

(a) 1 Block (b) 2 Blocks (c) 8 Blocks

Figure 7: Saliency Maps for Number of Blocks in Encoder

Unlike our intuition, the results show that the number
of encoding did not change performance meaningfully. In
fact, having only 1 encoding block achieved slightly better
test accuracy (33.6%) than the baseline of 4 block (32.8%).
The 1 block strategy also achieved better recall and F1 score
than the baseline, that by small margins. Having 8 blocks,

also degraded performance from baseline slightly. In sum-
mary, we believe the number of encoding blocks had mini-
mal influence on performance because our training dataset
was so small and did not allow for deeper representations to
be learned. This hypothesis could be tested by training the
same models on 10-100x more data.

5.4. Attention Heads

In our third experiment, we altered the number of atten-
tion heads in the multi-head attention module - whose pur-
pose we thoroughly explained in our Methods section. We
see the results of the experiment in Table 5, as well as the
accompanying confusion matrix in Figure 8 and saliency
map of an image of a fish in Figure 9.

Heads Train
Acc

Test
Acc

Recall Prec F1
Score

ROC
AUC

SMM

1 0.475 0.352 0.341 0.337 0.324 0.771 0.041
2 0.460 0.372 0.370 0.348 0.335 0.771 0.001
Base 0.476 0.328 0.317 0.367 0.312 0.766 0.025
8 0.523 0.340 0.321 0.373 0.337 0.777 0.029

Table 5: ViT with Different Number of Attention Heads Results
on 10 Tiny Imagenet Classes

(a) 1 Attention Head (b) 2 Attention Heads

(c) 8 Attention Heads

Figure 8: Confusion Matrix for Number of Attention Heads

(a) 1 Attention Head (b) 2 Attention Heads (c) 8 Attention Heads

Figure 9: Saliency Maps for Number of Attention Heads

The results of this experiment show a meaningful in-
crease in test accuracy by decreasing the number of heads
from 4 (Base) to 2 followed by a second best overall test
accuracy of 1 head. We hypothesize that, similar to the pre-
ceding section, the training set may be too sparse to learn

6

rich representations across many heads. This theory must
be tested further.

The precision, recall, F1 and ROC AUC scores are
marginally different between models. Notably, our novel
SMM score is highest on the model with 1 head because,
as Figure 9 shows, it is the model with the most attention
overlaid on the body of the fish.

5.5. Hidden Dimension

In our fourth experiment, we altered the hidden dimen-
sion size. The hidden dimension in Vision Transformers
(ViTs) refers to the dimensionality of the internal repre-
sentations that the model learns. After the input image is
divided into patches and each patch is flattened, these flat-
tened patches are linearly transformed into embeddings of
this hidden dimension. Throughout the transformer’s lay-
ers, all the operations (self-attention, feed-forward neural
networks) operate on these embeddings and maintain this
dimension. The choice of hidden dimension is a trade-
off between computational resources and model capacity.
A larger hidden dimension size can increase the model’s
capacity, allowing it to learn more complex representa-
tions and potentially improving performance. However, this
comes at the cost of increased computational requirements,
both in terms of memory and processing power. Conversely,
a smaller hidden dimension size reduces computational de-
mands but may limit the complexity of the representations
the model can learn, potentially resulting in poorer perfor-
mance.

We see the results of the experiment in Table 6, as well
as the accompanying confusion matrix in Figure 10 and
saliency map of an image of a fish in Figure 11.

Hid
Dim

Train
Acc

Test
Acc

Recall Prec F1
Score

ROC
AUC

SMM

4 0.388 0.346 0.342 0.311 0.310 0.735 0.021
Base 0.476 0.328 0.317 0.367 0.312 0.766 0.025
16 0.510 0.374 0.369 0.356 0.348 0.789 0.026
32 0.100 0.100 0.100 0.010 0.018 0.502 0.017

Table 6: ViT with Different Hidden Dimension Size Results on 10
Tiny Imagenet Classes

The results of this experiment are surprising. As we ex-
pected, a higher hidden dimension (16) performs better than
the base model (dim 8). This was not, however, the case for
a hidden dimension of 32, which performed worse of all
and simply guessed class 8 for all images. We suspect this
is because the model overfit in this situation, due to there
being too many learned parameters and not enough training
images (only 500 per class with some classes having similar
images).

(a) 4 Hidden Dimension (b) 16 Hidden Dimension

(c) 32 Hidden Dimension

Figure 10: Confusion Matrix for Hidden Dimension

(a) Size-4 Hidden Di-
mension

(b) Size-16 Hidden Di-
mension

(c) Size-32 Hidden Di-
mension

Figure 11: Saliency Maps for Hidden Dimension

5.6. Residual Connections

In our fifth experiment, we tried removing all residual
connections from the encoder in the ViT. In the baseline im-
plementation, residual connections are used in order to in-
crease model performance by preventing overfitting as well
as reducing the effect of the vanishing gradient problem.
They enable the direct flow of information by adding the
original input to the output of a layer, creating a shortcut
connection. We see the results of the experiment in Table 7,
as well as the accompanying confusion matrix and saliency
map of an image of a fish in Figure 12.

Res-
Conns

Train
Acc

Test
Acc

Recall Prec F1
Score

ROC
AUC

SMM

Base 0.476 0.328 0.317 0.367 0.312 0.766 0.025
No 0.100 0.100 0.100 0.010 0.018 0.500 0.297

Table 7: ViT with and without Residual Connections Results on
10 Tiny Imagenet Classes

As expected, the model performs no better than random
with 10% test accuracy. Interestingly, it guesses class 5 for
all the classes, which is likely because removing the resid-
ual causes the model to struggle with propagating the gra-
dient back through the many layers during training, often
referred to as the vanishing gradient problem. In such a sce-
nario, earlier layers of the model learn very slowly or stop
learning altogether, leading to sub-optimal performance.

Further, the uniform prediction for class 5 could be a

7

(a) Confusion Matrix
(b) Without Residual Con-
nections

Figure 12: Confusion Matrix and Saliency Map for No Residual
Connections

symptom of the model failing to differentiate the input fea-
tures across different classes. Without residual connec-
tions, the model might be falling into a simplistic strategy of
predicting the most common or easiest-to-distinguish class
(boa constrictor in this case) instead of learning meaning-
ful patterns from the data. This implies that the complexity
and depth offered by the model architecture are being com-
pletely lost without the residual connections.

Though the saliency map looks very good at first blush,
we suspect this was randomly fortunate because the fish
happens to be in the center of the image, which overlaps
with the randomly initialized attentions. Further, since these
random attentions covers a wide area of each image, this
likely boosted the SMM score above the baseline. This
highlights why the SMM score must be used with other met-
rics to gain a complete picture of model performance.

5.7. Layernorm

In our final experiment, we removed the layernorm lay-
ers from each encoder block in the ViT. Layer normaliza-
tion is a crucial component in ViTs that helps stabilize the
learning process and improve model performance. By nor-
malizing the inputs across the hidden dimension, layer nor-
malization reduces the impact of varying scales and offsets
in the data, making the model more robust and less sensitive
to parameter initialization. We see the results of the exper-
iment in Table 8, as well as the accompanying confusion
matrix in Figure and saliency map of an image of a fish in
Figure 13.

Layer-
norm

Train
Acc

Test
Acc

Recall Prec F1
Score

ROC
AUC

SMM

Base 0.476 0.328 0.317 0.367 0.312 0.766 0.025
No 0.100 0.100 0.100 0.010 0.018 0.500 0.482

Table 8: ViT with and without Layernorm Results on 10 Tiny Im-
agenet Classes

The results are very similar to the preceding section
where removing the layernorm strips the model of all of
its expressibility and ability to learn complex relationships
between images. In this case, the model outputs class 9
for every input. We think the removal of layer normaliza-

(a) Confusion Matrix (b) Without Layernorm

Figure 13: Confusion Matrix and Saliency Map for No Layernorm

tion led to unstable gradients during training, causing the
model to become stuck and not learn effectively. Without
layer normalization, the scales and distributions of activa-
tions throughout the model can vary wildly during training,
leading to gradient explosions or vanishing gradients. Fur-
thermore, the removal of layer normalization may increase
the model’s sensitivity to the initial parameter values. This
could lead to the model converging to sub-optimal solutions
that are heavily influenced by its initial state. This experi-
ment shows that layer normalization is essential for main-
taining stability during training and allowing the model to
learn complex patterns within the data.

Like the preceding section, the saliency map is random
and not informative to the function of the model.

6. Conclusion/Future Work
In conclusion, our methods for visualizing and analyzing

the performance of vision transformers, our careful selec-
tion of experiments to modify our custom ViT implemen-
tation and our deliberate choice to limit the amount of data
each model trained on allowed us to understand and present
both what attention is ”looking at” and how important each
component of a ViT is.

Of all architectural changes explored–positional encod-
ing, number of encoder blocks, number of attention heads,
size of the hidden dimension and the presence of residu-
als and layernorms–on our ViT model, a learned positional
encoding and a hidden size of 16 boosted performance the
most. In this data constrained environment, with only 500
32 x 32 images from 10 classes of the Tiny Imagenet dataset
[10], we showed that modulating the number of encoding
blocks and attention heads had marginal affect on perfor-
mance. Lastly, we demonstrated the absolute necessity of
layernorm and residual connections in ViT models.

Besides accuracy and the standard quantitative metrics,
we judged our model using two novel ideas: attention visu-
alizations and the Saliency-Map Mask Metric (SMM). The
attention saliency maps gives a qualitative interpretation of
performance. We then introduced the SMM metric, which
compares the overlap between the attention and the ground
truth object segmentation, as a quantitative measure. We
demonstrate that both metrics cannot be used in isolation
and must be used together for best interpretability.

8

In the future, we would continue to run ablation on dif-
ferent parts of the ViT. Once we better understood the best
architecture for this low-data environment, we would col-
lect 10 to 100 times more training images from each class
and re-run all experiments in this non-constrained environ-
ment. We would be interested if and how these optimal
model configurations changed in this new data regime.

7. Contributions / Acknowledgements
Note: For most of the project, we worked as a group

coding together, so there is a lot of overlap for what we all
did.

Aayush: worked on image visualization code and exper-
iment design and execution, as well as modifying the Vision
Transformer for experiments, spearheaded the paper

Elliot: worked on model training and instance segmenta-
tion / calculation of the SMM metric, worked on visualiza-
tion code, wrote the paper intro and related works

Finn: implemented the Vision Transformer from scratch
and modified it for the experiments, worked on image visu-
alization code, worked on the paper’s methods section

For the instance segmentation to compute our SMM
metric, we modified code from this GitHub repo: https:
//github.com/spmallick/learnopencv/
tree/master/PyTorch-Mask-RCNN.

For the attention map visualization, we modified
code from this GitHub repo: https://github.com/
jacobgil/vit-explain.

Additionally, the following is a link to our
code: https://github.com/finndayton/
CS231N-Final-Project.

References
[1] pytorch Python library.
[2] scikit-learn Python library.
[3] matplotlib Python library.
[4] S. Abnar and W. H. Zuidema. Quantifying attention flow in

transformers. CoRR, abs/2005.00928, 2020.
[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,

X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale, 2021.

[6] J. Gildenblat. Awesome machine learning. GitHub
Repository, 2021. Retrieved from https:
//github.com/jacobgil/vit-explain/tree/
15a81d355a5aa6128ea4e71bbd56c28888d0f33b.

[7] J. Gildenblat. Exploring explainability for vision transform-
ers. Blog post, 2021.

[8] R. Girshick. Fast r-cnn, 2015.
[9] T. Klug and R. Heckel. Scaling laws for deep learning based

image reconstruction. In The Eleventh International Confer-
ence on Learning Representations, 2023.

[10] Y. Le and X. Yang. Tiny imagenet visual recognition chal-
lenge. Stanford University, CS231N, 2015.

[11] M. Raghu, T. Unterthiner, S. Kornblith, C. Zhang, and
A. Dosovitskiy. Do vision transformers see like convolu-
tional neural networks?, 2022.

[12] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and
L. Zhang. Cvt: Introducing convolutions to vision transform-
ers, 2021.

9

https://github.com/spmallick/learnopencv/tree/master/PyTorch-Mask-RCNN
https://github.com/spmallick/learnopencv/tree/master/PyTorch-Mask-RCNN
https://github.com/spmallick/learnopencv/tree/master/PyTorch-Mask-RCNN
https://github.com/jacobgil/vit-explain
https://github.com/jacobgil/vit-explain
https://github.com/finndayton/CS231N-Final-Project
https://github.com/finndayton/CS231N-Final-Project
https://github.com/jacobgil/vit-explain/tree/15a81d355a5aa6128ea4e71bbd56c28888d0f33b
https://github.com/jacobgil/vit-explain/tree/15a81d355a5aa6128ea4e71bbd56c28888d0f33b
https://github.com/jacobgil/vit-explain/tree/15a81d355a5aa6128ea4e71bbd56c28888d0f33b

