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Abstract
Prompt-tuning is an efficient, low-cost way
of adapting a large foundation models to new
downstream tasks without retraining the model
and updating its weights. Recent work has
demonstrated this technique can lead to strong
performance on tasks not originally pre-trained
on and for a fraction of the resources. In the
paper, we explore the interpretability of tuned
prompts both at an embedding level and a se-
mantic one. We then look at prompt stochas-
ticity under different conditions. Lastly, we
investigate the zero-shot task transferability of
learned prompts. We find that understanding
the inner working of prompts leads to better
design choices for prompt-tuning in general.

1 Introduction

In recent years, large language models (LLMs)
have grown exponentially in size, with current
state of the art models, like GPT-4 (OpenAI, 2023),
possibly exceeding over 100 trillion parameters .
While these extremely large LLMs possess human-
level capabilities at a number of natural language
tasks, due to their size it is extremely computation-
ally expensive to train them on new, unseen tasks.
Parameter efficient finetuning methods, therefore,
have become a very effective way to train large
models for unseen tasks in a way that is fast and
inexpensive.

Prompt-tuning (Lester et al., 2021) is a simple
yet effective parameter efficient finetuning method
that only trains and updates a prepended series of
tokens to a prompt for a pretrained model. This
way, one can use a pretrained model whose weights
are frozen, and train and update a smaller set of
prompt parameters for each downstream task in-
stead of fully finetuning a separate model. As a
result, prompt-tuning can be seen as a computation-
ally inexpensive method for training large language
models on downstream tasks.

To further illustrate how prompt-tuning works,
consider the following example. Suppose we have

a large language model and would like to train it
on a text summarization dataset. Using prompt-
tuning, we add a small set of tunable tokens that
are prepended to the input (the text to summarize)
of the model. Then, during training, we use the
same objective as we would in the setting where
we are finetuning the entire model, however, this
time the model parameters are completely frozen
and we only update the prepended tokens. Through
this optimization procedure, we are left with a
prompt that has been optimized for the specific
task. (Lester et al., 2021) and many others have
shown that prompt tuning can achieve or even beat
a model finetuned on that task.

Extensive work has been conducted on prompt-
tuning’s efficacy when it comes to improving model
performance on unseen tasks (Shin et al., 2020),
(Li and Liang, 2021) (Lester et al., 2021) (Vu et al.,
2022). We noticed, however, that limited work has
been conducted on interpreting the prompts on an
embedding and semantic level once they are tuned.
Extracting semantic meaning from tuned prompts
could be extremely useful. For instance, it might in-
form humans on how better to design prompts them-
selves, showing us what is truly useful or not useful
to include in a prompt. Moreover, analysing and
comparing the embedding of soft-prompts could be
extremely useful also. For instance comparing the
similarity between soft-prompts trained on differ-
ent tasks could inform us on the overall similarity
between tasks.

In this paper we hold the hypothesis that having
a better understanding of the soft-prompts gener-
ated through prompt-tuning at the embedding and
semantic levels will help us design more effective
prompts. Moreover, we hypothesize that better un-
derstanding the stochasticity of generated prompts
across different tasks can help build intuition and
lead to more stable training practices. Lastly, a
deeper analysis on the embedding level will help in
predicting the zero shot transferability of prompts.



In order to test these hypotheses, our paper will
look at interpreting these soft-prompts on a subset
of datasets from SuperGLUE: CB, RTE, COPA &
WSC. First we will explore the semantic meaning
of the tuned prompts. Then we will look at the
stochasticity to help how the learned prompts vary
across separate trains for each task. Finally, we
will turn our attention to the specific information
encoded in these prompts by looking at the zero
shot prompt transferability of the generated soft-
prompts.

We show that indeed, these three investigations–
semantic meaning of learned prompts, stochastic-
ity and zero-shot transferability–do shed light on
the innerworkings of prompt tuning and are help-
ful both for building intuition and building good
prompt tuning algorithms.

2 Prior Literature

(Shin et al., 2020) introduces the concept of prompt-
tuning. The authors show that large, pretrained
language models have the inherent capability to
perform sentiment analysis and NLI (natural lan-
guage inference)–tasks not specifically trained on–
without finetuning on them. They demonstrate that
this is possible with carefully worded prompts that
provide the model with enough information to suc-
cessfully complete the new task. Writing good
prompts, however, is hard. The authors propose a
scheme for generating prompts for a specific task
and given model. The prompt takes the format
sentence[T][T][T][T][T][P], where sentence is an
example query for the new task, and the T’s are
“trigger words”, words learned through gradient
search to maximize the correct output. They essen-
tially inject more rich information into the prompt
to assist in retrieving the correct answer. P is the
end token and is set to “[MASK]”. After feeding
the prompt into the MLM, it produces a predic-
tion for [MASK], which is the answer. This paper
is the main inspiration for our analysis of learned
prompts. It was the first to show that prompt-tuning
could match finetuning performance.

(Li and Liang, 2021) builds on (Shin et al., 2020).
(Shin et al., 2020) uses discrete promoting which
is limited to real words. (Li and Liang, 2021)
uses learns continuous embeddings in the prefix
for more expressively. The models used are GPT-2
and BART for table-to-text and summarization, re-
spectively. The authors also show that in full-data
settings, prefix tuning and finetuning get compa-

rable results but that in low-data settings, prefix
tuning outperforms finetuning. The authors em-
phasize that the main benefit of prefix-tuning over
finetuning is savings in computation and memory:
a model does not need to be duplicated, trained
and stored to specialize to certain tasks. Lastly, the
authors go one step further by optimizing the acti-
vations of all layers by altering embeddings deeper
in the network. The authors also ablate placing the
learned embeddings at the front of the prompt (pre-
fix) and between two chunks of the prompt (infix)
and find the former works better. Finally, the au-
thors demonstrate that a longer prefix means more
trainable parameters, and therefore more expres-
sive power. Not being limited to domain of real
words and instead tuning continuous embeddings
was the main contribution of this paper to our work.

(Lester et al., 2021) can be seen as a simplifica-
tion of (Li and Liang, 2021). They emphasize that
better-than-finetuning performance can be achieved
by just tuning the prompt embedding, i.e. with no
intermediate layers in the model as (Li and Liang,
2021) also trains. They freeze the entire pre-trained
model and only allow an additional k tunable to-
kens per downstream task to be prepended to the
input text. The authors provide a an end-to-end
learned approach that outperforms GPT-3’s few-
shot learning by a large margin. This paper helped
us simplify our approach: instead of adding train-
able layers inside the model, we can focus solely
on training the prompt itself.

(Vu et al., 2021) presents soft-prompt Transfer
(SPoT), which builds on the PromptTuning archi-
tecture presented by (Lester et al., 2021). SPoT
first trains a prompt on one or more “source” tasks,
and then uses the resulting prompt to initialize
the prompt for a “target” (downstream) task. In
other words, the prompts are first trained on the
source tasks and then further adapted for the target
task. This is analogous to transfer learning where a
model (e.g. Resnet) is trained to classify CIFAR im-
ages and then finetuned to classify cancer images.
This allows the prompts to carry over some of the
knowledge learned from the source tasks, which
can potentially improve the model’s performance
on the target task. Further, the authors design an
efficient retrieval algorithm to identify source tasks
that will likely yield positive transfer for new tar-
get tasks. To better understand this, authors con-
ducted a systematic study of the T5 model using
26 NLP tasks in 160 combinations of source and
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Figure 1: Prompt-Tuning Diagram. Example for RTE Dataset.

target tasks. The results are impressive: SPOT
matches or outperforms standard model finetuning
on the Super GLUE benchmark, while using up to
27,000× fewer task-specific parameters. This paper
was our inspiration for examining the transferabilty
of prompts. Unlike this paper, however, we do not
train the prompt on the new task and are purely
interested in the zero-shot performance between
similar and dissimilar tasks.

3 Data

We trained soft-prompts for the following four
datasets from SuperGLUE (Wang et al. (2020)):
CB, RTE, COPA and WSC. We used datasets from
SuperGLUE because it is a popular benchmark
that contains challenging NLU tasks. We picked
this particular subset because the model we chose,
bloomz-560m, was finetuned on the other Super-
GLUE datasets, meaning it had seen all their vali-
dation sets before.

3.1 CB: CommitmentBank

The CommitmentBank dataset annotates whether
the hypothesis logically follows ("entails") from
the premise. The three output labels are "entail-
ment", "contradiction", or "neutral". "entailment"
means the claim logically follows from the
premise, "contradiction" means the claim goes
against what is stated in the premise, and "neutral"
means the claim could be possible based on the
premise, but it doesn’t definitively follow from it.

Example data
premise:"B: and, you know, they just love

kittens. A: Yeah. B: They just are

fascinated. A: Oh, yeah. B: So she

doesn’t know that this is a cat yet."

hypothesis: this is a cat

label: 0 (entailment)

3.2 RTE: Recognizing Textual Entailment

The RTE dataset annotates "entailment" or "not en-
tailment" on a premise + hypothesis sentence. This
is like CB, but without an option for contradiction.

Example data
premise:"There has been a lot of

concern over the rise of drug-resistant

bacteria."

hypothesis:"Bacteria is winning the war

against antibiotics."

label: 1 (not_entailment)

3.3 COPA: Choice of Plausible Alternatives

COPA is a good measure of a causal reasoning of
our model, as the question conditions the model to
predict whether choice 1 or 2 was a cause or effect
of the premise. Each premise is given this question
and two choices, and the model must predict which
of the two choices caused/effected the premise.

Example data
premise: "My eyes became red and puffy."

choice 1: "I was sobbing."

choice 2: "I was laughing."

question: "cause"
label: 0 (choice 1)
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3.4 WSC: Winograd Schema Challenge

The WSC dataset contains examples of which
noun a pronoun refers to. Each example gives
a sentence, a noun (and index of noun within
sentence), pronoun (and index), and a T/F label of
whether the pronoun refers to noun.

Example data
text:"Jane gave Joan candy because she

was hungry."

span1: (Jane, 0)

span2: (she, 5)

label: 0 (False)

4 Model

We decided to use the bloomz-560m model from
Hugging Face as our model (Muennighoff et al.,
2023). bloomz-560m is model capable of fol-
lowing human instructions in dozens of languages
zero-shot. It is the bloom-560m base model fine-
tuned on HuggingFace’s crosslingual task mixture
(xP3). It is capable of crosslingual generalization
to unseen tasks & languages.

We settled on bloomz-560m for a few rea-
sons. The first is due to its size. As Lester et al,
mentioned, prompt-tuning performance improves
drastically with larger parameter models. Thus we
wanted to use a model that took full advantage of
our available compute space. This is why we did
not pick a smaller model such as Bert or RoBerta.
Secondly, we thought bloomz-560m’s ability
to represent many languages would provide some
interesting insights in our interpretability work.
Specifically, we wondered if for certain tasks,
different languages might appear in our tuned
prompts.

5 Methods

5.1 Semantic Interpretability

For our first experiment, we wanted to explore
the semantic interpretability of our generated soft-
prompts for each of our tasks, to see if we could
learn anything about what constitutes an optimal
prompt.

Each soft-prompt we trained can be viewed
as an embedding matrix, P , of size n × 1024,
where n refers to the number of tokens in the soft-
prompt and 1024 the embedding size used by the
bloomz-560m model. To extract the semantic
meaning of a soft-prompt for a particular task we

first optimize the prompt on a task’s train split. We
employed an early stopping strategy in our training
procedure as we did not want the soft-prompts to
overfit to our training set. Thus, we ended train-
ing once the evaluation loss stopped decreasing,
corresponding to a patience value of 5.

Once training finishes, we look at each row
(which corresponds to a particular token em-
bedding) in the resulting soft-prompt matrix, P ,
one at a time. Then, we compare the token
embedding with every token embedding in the
bloomz-560m dictionary, using cosine similar-
ity, and return the most similar tokens for each row
in P . In this way, we are able to reconstruct the
semantic meaning of any soft-prompt.

We use the cosine similarity metric because
the tuned token embedding will most likely
not directly correspond to an actual token in
bloomz-560m’s dictionary due to the contin-
uous nature of token embeddings.

An important point to note about our method
is that we initialized our soft-prompts such that
they were "good" prompts for their respective tasks
rather than simply randomly intializing them. We
found that randomly initialized prompts would both
take significantly longer to converge and would
yield much lower accuracy.

We came up with the ‘good’ prompts ourselves
and have listed the them below for each task as
well as the number of tokens they are made up of:

• CB: "Does the hypothesis entail, contradict
or is neutral about the premise?" (15 tokens)

• RTE: "Does the hypothesis entail, or not entail
the premise?" (14 tokens)

• COPA: "Pick the correct choice given the
premise and the question." (12 tokens)

• WSC: "Given the following text, decide
whether the span1_text is referenced by the
pronoun in span2_text" (20 tokens)

5.2 Stochasticity
In this experiment, we explore the variability in
final soft-prompts across independent training runs
and between the four tasks, CB, RTE, COPA and
WSC.

Each training run has inherent stochasticity from
the Adam optimizer, which uses randomly initial-
ized momentum vectors. This random initialization
can lead to varying final model states despite the
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same initial conditions and identical hyperparam-
eters across runs. Additionally, the inherent dif-
ferences in the complexity and nature of each task
(CB, RTE, COPA, and WSC) contribute to variabil-
ity in the training process and final soft-prompts.
Understanding this variability can provide insights
into the robustness of the training process, and in-
form potential strategies for model optimization
and performance improvement.

We ran training 4 times, each for 50 epochs, for
each of the tasks. This was 16 full training runs in
total.

5.3 Zero Shot Task Transferrability

Our final experiment involved analyzing and
comparing the embeddings of the resulting soft-
prompts for each task with one another. We hy-
pothesize that a soft-prompt generated from one
task that is similar to a soft-prompt from another
task would perform well as the prompt for that
other task.

To go about testing this, we defined a similar-
ity metric between two soft-prompts as the Frobe-
nius Norm of the difference between the two soft-
prompt embedding matrices. For instance, consider
two soft-prompt embedding matrices, A and B, we
calculate the similarity score as follows, where a
lower score indicated greater similarity

Similarity = ∥A−B∥F

The Frobenius Norm of a matrix is a measure of
its magnitude, similar to how the Euclidean norm
measures the magnitude of a vector. If X is a m×n
matrix, the Frobenius Norm of X can be defined
mathematically as as follow, where xij denotes the
elements of matrix X:

∥X∥F =

√√√√ m∑
i=1

n∑
j=1

|xij |2

After we find the similarities between all the soft-
prompts, we take each learned soft-prompt and use
it as the prompt for another task and run inference
on that task’s validation set. For instance, we take
the soft-prompt learned from RTE and use it as
the prompt for WSC and perform inference on the
WSC validation set. We then report the change
in accuracy that using the RTE prompt has over
simply running the WSC validation set with no
prompt. For all the datasets in this paper, we use
the exact match metric for reporting accuracy.

Finally we look to see if there is any correlation
between the similarity of embeddings and the cross-
task prompt performance.

6 Results

Note: All accuracy metrics presented are the ex-
act match accuracy for each task on its respective
datatset.

6.1 Semantic Interpretability Results

Figures 2, 3, 4 and 5 show the results of the seman-
tic extraction of the soft-prompts for each of our
four datasets.

Each row in the figures contain the 3 most similar
extracted tokens for the corresponding soft-prompt
token, with the most similar to the left and least
similar to the right. You should read from top to
bottom. We decided to provide the 3 most similar
tokens to highlight that no one token completely
conveys the meaning of a particular soft-prompt
embedding.

The results are extremely interesting. At first
glance the soft-prompts seem to have diverged dras-
tically from their original starting points. We see
that different languages have appeared and even
non-language tokens like the new line character
that appears in the COPA extraction. However,
upon closer insepction we see that in CB, RTE and
COPA, certain tokens have remained constant from
the original prompts (highlighted in red). This is
particularly interesting since other tokens diverge
and become very different from their original, indi-
cating that the tokens that stay the same must really
help the model in making a prediction.

Moreover we observe that the tokens switch to
other languages, such as French, Arabic and Farsi,
which is not surpising considering bloomz-560m
was trained on a wide variety of languages. How-
ever, what is particulary interesting is we see cer-
tain key words present in the original prompt ac-
tually translated into different languages as shown
in the CB prompt extraction in figure 2. The sixth
from the bottom row contains a Persian word fol-
lowed by a Punjabi word. Both of these words
mean contradiction in English which was one of
the words in the original CB prompt.

The final interesting thing we see are the words
highlighted in orange. Across three of the four
tasks (RTE, COPA, WSC) we all see tokens that
have meanings that convey accuracy. In RTE we
have the English word "accurate", in COPA we
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have the chinese characters for "accurate" and in
WSC we see the Kannada word for "correct". This
shows that the model likes to be explicitly told to
be accurate when completing one of these tasks.

Figure 2: CB Prompt Extraction
"Does the hypothesis entail, contradict or is neutral

about the premise?"

Figure 3: RTE Prompt Extraction
"Does the hypothesis entail, or not entail the premise?"

6.2 Stochasticity Results
For each of the four tasks, we ran four duplicate
trainings. Each learned prompt is a large 2d matrix.
Figure ?? shows the result of projecting each high-
dimensional learned prompt into a location on a
two dimensional map using t-distributed stochastic
neighbor embedding (T-SNE). Each point in Figure
?? is learned prompt, and the prompts are color
code for each task. Prompts of the same task are
connected via color-coded lines for visual effect.

Figure 6 highlights the first interesting result of
this section: learned prompts for the same tasks are
all nearly equidistant. This shows training to be
stable.

We then looked at the variance within each class
for the learned prompts. Table 1 presents these
results.

Figure 4: COPA Prompt Extraction
"Pick the correct choice given the premise and the

question."

Figure 5: WSC Prompt Extraction
"Given the following text, decide whether the

span1_text is referenced by the pronoun in span2_text"

These findings highlight another interesting re-
sult. Harder tasks have higher variance among the
learned prompts than easier ones. We quantify the
relative difficulty of our four tasks based on the
median validation accuracy reported on each in
the original bloomz-560m paper (Muennighoff
et al., 2023). Table 2 shows these.

The table reinforces an interesting intuition:
CoPA, the task with the most variance in soft-
prompts in Table 1 also has biggest delta between
its median accuracy and maximum accuracy in Ta-
ble 2. Figure 6 gives a visual intuition of this, with
the largest rectangle being formed by the CoPA
soft-prompts, indicating the widest swings in opti-
mal prompts.

6.3 Zero Shot Task Transferability Results

The results from this experiment show that zero
shot task transferability using learned soft-prompts
on our datasets hold weight. In Figure 7 we show
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Figure 6: Duplicate Trains Produce (Nearly)
Equidistant Prompts

CB RTE COPA WSC
Avg. 119.2 107.7 111.2 135.3
Var. 1.31 3.5 38.5 3.8

Table 1: Average Norm and Variance of Learned Prompts Per
Class

the similarities of the final prompt embedding
matrices using the frobenius norm metric defined
previously. Figure 8 shows the change in accuracy
over the test set when we use a soft-prompt trained
on one task on another task. For instance, the top
right cell of Figure 8 shows that there is a +0.4
accuracy increase when we evaluate copa on our
model using the soft-prompt generated in CB
versus when we simply run our model on copa
with no prompt.

We can clearly see that for low values in Figure
7 (i.e more similar tasks) there are larger improve-
ment gains when we run the soft-prompts trained
on those tasks on the other dataset. For instance
take the first row of Figure 8, namely the row which
demonstrates the performance gains of using the
CB soft-prompt on the other four datasets. As is to
be expected, the largest performance gain is when
the CB soft-prompt is used on the CB validation
split. Although we also see improvement gains on
rte, wsc and copa and moreover there is a rough
trend corresponding to their forbenius norm simi-
larity.

7 Analysis

We believe our results were very helpful in gaining
a deeper understanding of the final soft-prompts
generated through prompt-tuning.

From a semantic standpoint, our experiments
demonstrate that the model clearly values certain
words in prompts. This could be seen by the fact

Task Median
Accuracy

Maximum
Accuracy

Delta

CoPA 55% 67% 12%
CB 43% 61% 8%
WSC 51% 52% 1%
RTE 53% 54% 1%

Table 2: bloomz-560m Original Paper (Muennighoff
et al., 2023) Results on Our Four Tasks

Figure 7: Soft Prompt Similarity Via Frobenius Norm

Figure 8: Zero Shot Task Transferrability Exact Match
accuracy differences

that across training, they never disappeared from
the prompt, for instance the word ‘entail’ in both
the CB and RTE prompts. For both CB and RTE,
the notion of entailment is the central task of the
dataset and so it makes sense that this word would
be highly valuable to the model. Moreover, there
appear to be other specifications within prompts
that the prompts trained on our tasks converged
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on, such as the notion of ‘accuracy’. It must also
be noted that these prompts do display less clear
semantic meaning than we had originally thought,
which is a nice reminder that these models operate
in fundamentally different ways to humans and that
interpretaing what these models are doing under
the hood is still an extremely difficult thing to do.

Our results regarding the stochasticity of soft-
prompts are also enlightening. Before conduct-
ing these experiments we were very curious as to
whether certain tasks might have many different
‘optimal’ prompts. Our experiments with stochas-
ticity demonstrated while the soft-prompts for the
same task across separate trains are not exactly the
same, they tend to be equidistant from each other.
This was true for each of the four tasks. Further, the
variance, or distnace between prompts was notice-
ably different for each task. We drew a correlation
with these findings and the performance variance–
defined as the difference between median and max
accuracy–original observed in the bloomz-560m
paper (Muennighoff et al., 2023). These findings
are important because they show soft-prompt tun-
ing is relatively stable, but the variance in outcomes
is correlated with the unique challenges and char-
acteristics of each task.

Finally, our comparison of the soft-prompts’
zero-shot transferability clearly demonstrates that
similar trained soft-prompts can be transferred
across tasks and yield perforamnce in accuracy
over using no prompt at all. This indicates that as
well as learning a task specific description, these
soft-prompts also encode other meanings relating
to general NLU tasks.

8 Conclusion

In this paper, we investigated the interpretability of
the soft-prompts generated through prompt tuning.
We showed that interpretaing the semantic mean-
ing of soft-prompt is very difficult. We showed,
however, that in some circumstances it can help
us understand aspects of prompts that models find
beneficial such as notions of accuracy or key def-
initions needed for the task at hand. Furthermore,
we found for our tasks that prompt tuning yields
fairly consistent results, but more difficult tasks
lead to more variance in the final prompts. Finally,
through comparison at the embedding level, we
showed that soft-prompts can carry a lot of gen-
eralized NLU information as well as task specific
information. This was evident by the success of the

various soft-prompts on the zero-shot prompt trans-
ferability challenges. Overall, we believe that our
results shed light on the inner workings of prompt-
tuning and are helpful both for building intuition
and building good prompt tuning algorithms.

Known Project Limitations

Our findings are based on experiments with a
specific set of datasets from SuperGLUE and on
bloomz-560m. While these datasets cover a
wide range of tasks, they may not be representative
of all possible natural language processing tasks.
As such, the learned prompts might not display
the same level of transferability in tasks that are
significantly different from those in our study. We
encourage further studies that extend our analysis
to diverse and more complex tasks and on other
pretained language models.

This same limitation extends to our analysis of
learned-prompt stochasticity. These results are also
dependent on the random initialization choice of
the learned prompt and of the optimizer (Adam in
our case). We urge ablations are performed on both
of these in future research.

For our analysis of zero-shot transferability, it
should be noted that while we hypothesize that a
deeper analysis at the embedding level will help in
predicting the zero-shot transferability of prompts,
the performance of these prompts in a zero-shot
scenario might vary greatly depending on the com-
plexity and novelty of the unseen tasks. Therefore,
our findings should be considered as exploratory in
this context and used as a basis for future investiga-
tions.
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